Towards a recycling paper based platform for printed electrochemical biosensors

^{1,4}I. Muschlin, ¹A. Wildauer, ¹M. Raskovic, ²M. Heilmann, ²D. Ide, ³M. Borinski, ¹N. Kataeva, ¹E. Melnik*, ¹G. C. Mutinati, ¹R. Heer, ⁴P. Lieberzeit, ¹R. Hainberger

¹AIT Austrian Institute of Technology GmbH, H&E Department, Molecular Diagnostics, Vienna, Austria

²SCIO Holding GmbH, Linz, Austria

³Lenzing Papier GmbH, Lenzing, Austria

⁴University of Vienna, Austria

* Eva.Melnik@ait.ac.at

MOTIVATION

The decentralization of the health care system, driven by the demographic change, creates a strong demand for sustainable high volume and low cost biosensors that enable molecular diagnostics outside of laboratories.

To **overcome** these **limitations**, we aim to realise an electrochemical **single-use sensor**, which i) is based on **recycling paper** as substrate to enable environment-friendly production and disposal, ii) detects quantitatively glucose and ketone bodies in urine to permit the diagnosis of ketoacidosis [1], iii) is able to contactless communicate the measured values.

Paper manufacturing

- Cellulose matrix for biofunctionalisation
- Surface for electrodes

Roll-to-roll printing

Electrodes

bodies (beta-hydroxybutyric acid and acetoacetic acid)

Hydrophobic barriers

Microelectronics

- Printed antenna
- Assembly of bare dies

State of the art: Single-use test strips using color indicators

Urine test strips

- Plastic substrate
- Subjective visual perception
- No electronic data recording
- Detect only acetoacetic acid, no reaction with acetone or β-HB [1]

1000

No present point of care system can detect beta-hydroxybutyric acid and acetoacetic acid

PIONIER demonstrator

- Paper substrate
- Quantitative results
- Contactless read-out
- Battery-free
- Automatic data recording
- Environment-friendly

Biosensing Concept

- 5 kHz
- 30 mV

24000

Electrochemical biosensing for the quantification of glucose and ketone

Gold Sensors on Glass

Sensor Type

- Analyte deposition from the **front** side
- 50 µm IDES

Silver Sensors on PET

- Analyte deposition from the **front** side
- 200 µm IDES

Silver Sensors on Paper

- Analyte deposition from the back side
- 200 μm IDES

NaCl Series

Glucose

Series

1000 750 500 0 10 20 30 40 50 60 70 80 90 100110 NaCl Concentration [mmol/l] 1.10 1.05

- 20000 12000 8000 0 10 20 30 40 50 60 70 80 90 100110 NaCl Concentration [mmol/l] 1.20 1.10
 - NaCl Concentration [mmol/l]

 1.20
 1.10
 1.00
 0.80
 0.80
 0.70
 0.60
 0.0
 0.1
 0.1
 0.2
 Time [h]

- Different glucose concentrations can be measured quantitatively with 50 µm gold sensors on glass.
- Glucose measurements with silver sensors on PET yield different curves but still, a change is visible.
- Measuring with silver sensors on paper can be performed from the back side. Reactions between glucose and glucose oxidase are visible.
- Enzymatic hydrogel immobilized inside the paper matrix can be used for signal enhancement [4].

3 J. Wissenwasser, M. Vellekoop, R. Heer, Review of scientific instruments 81, 025106 (2010).

References

1 L. Laffel, Diabetes Metab Res Rev, 15:412– 426 (1999).

2 A. W. Martinez., S. T. Phillips, E. Carrilho, S. W. Thomas, H. Sindi, M.Whitesides, Anal. Chem. 3699–3707 (2008). 4 R. Verma, B. Gupta, Analyst 139 1449-14

4 R. Verma, B. Gupta, Analyst 139 1449-1455 (2014).

